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This paper presents an approximate method for solving Oseen’s linearized equations 
for a two-dimensional steady flow of incompressible viscous fluid past arbitrary 
cylindrical bodies at  low Reynolds numbers. The formulation is based on a discrete 
singularity method with a least squares criterion for satisfying the no-slip boundary 
condition. That is, sets of Oseenlets, sinks, sources and vortices are discretely distri- 
buted in the interior of the body, and then the least squares criterion attempts to 
minimize the integrated squares of velocities along the body contour, thus leading to a 
system of simultaneous algebraic equations. Complex-variable arithmetic, usually 
available on modern computers, makes the computation algorithm very simple. 
Furthermore, the method is applicable to cases that cannot be solved by classical 
analytical approaches. As examples of application, we computed the forces acting on a 
single circular cylinder, two circular cylinders of equal radius separated by a distance, 
an inclined elliptic cylinder and an inclined square cylinder all of which are immersed 
in uniform flow fields. The computed results agree very well with those of classical 
analytical methods. 

1. Introduction 
As is well known, the behaviour of a steady uniform flow of incompressible viscous 

fluid past obstacles is governed approximately by the Oseen’s equations of motion 
proposed by Oseen (1910), provided that the Reynolds number of the flow field is 
fairly small. Strictly speaking, Oseen’s equations are not valid in regions very near to 
body surfaces, but it is generally recognized that the so-called homogeneous Oseen 
flow which obeys Oseen’s equations everywhere in the field, is a useful model to calcu- 
late approximately the forces acting on obstacles in low-Reynolds-number flow. 

Since Oseen’s proposal, various analytical investigations have been hitherto made 
to solve flow problems of this type. However, analytical solutions have been found only 
for special geometries. For example, Lamb (1911) (see also Lamb 1932) first proposed 
the famous formula for the drag acting on a single circular cylinder placed in an on- 
coming uniform flow. Bairstow (1923) extended Lamb’s formula to obtain an analytical 
expression for the drag on an elliptic cylinder with its major axis parallel to the undis- 
turbed flow. Furthermore, Faxen (1927) gave the exact solution for the case of a 

0022-1 120/80/4393-8390 $02.00 @ 1980 Cambridge University Press 



158 H .  Y a m  and A .  Kieda 

circular cylinder. And Filon (1926) established general formulae for the drag and lift 
experienced by an arbitrary cylindrical body in terms of the inflow along its wake, and 
the circulation around it. Later, Imai (1951) refined Filon’s theory, and also presented 
a formula for the moment acting on a cylindrical body. In  addition, Imai (1954) 
developed a general method of solving two-dimensional Oseen equations by making 
use of complex variables and analytic functions. 

In general, these classical approaches are included in the ordinary boundary-value 
method which is based on the choice of an appropriate co-ordinate system according to 
the body geometry in question. And so body geometries to be dealt with are somewhat 
restricted. On the other hand, for potential flow problems, another method known as 
the singularity method has already been developed to seek solutions for more compli- 
cated geometries, and various techniques have been proposed for the types of singu- 
larities and their spatial distributions both in the two-dimensional and three-dimen- 
sional cases. Hess & Smith (1966) presented a typical formulation where singularities 
with unknown strengths are distributed continuously on the body boundaries, and 
then the boundary conditions are reduced to simultaneous algebraic equations for the 
unknown strengths of singularities. This method has been extended by Youngren & 
Acrivos (1975) to the case of Stokes flows. They had an unknown distribution of 
Stokeslets over the body boundaries, and obtained their strengths numerically by 
solving a system of linear algebraic equations. 

Recently, the present authors Kieda & Yano (1978) developed a discrete singularity 
method with the least squares criterion for the two-dimensional potential flow prob- 
lem. The present method is in fact an extension of this discrete singularity technique 
to the case of low-Reynolds-number flow. That is, with the problem restricted to the 
case of two-dimensional external flows, we first have a discrete distribution of sets of 
Oseenlets, sources, sinks and vortices in the interior of the obstacle, and then apply the 
least squares criterion to the no-slip boundary condition, thus obtaining a system of 
linear equations for the unknown strengths of the singularities, which can be solved 
numerically with the use of a computer. This formulation is basically a numerical 
approach with a very simple computation algorithm because of the use of complex 
variables. In  addition, it gives an approximate analytical expression for the complex 
velocity in a much easier-to-tackle form than any that can be found in the continuous 
singularity technique. 

2. General solution of Oseen’s equations 

dimensional steady flows of incompressible viscous fluids expressed as 
The starting point of the present method is Oseen’s linearized equations for two- 

where v2 = a2/ax2+ a2/ay2, x and y being the Cartesian co-ordinates, u and v the 
velocity components along x and y respectively, U ,  the velocity at  infinity in the 
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direction of x axis, p the pressure, p the density, and finally v the kinematic viscosity. 
And the equation of continuity is 

a u p x  + av/ay = 0. (2.3) 

It is generally recognized that Oseen’s equations (2.1) and (2.2) which approximate 
the nonlinear convective terms of the full Navier-Stokes equations are usually valid 
for Reynolds numbers of less than 1 in the sense of order except in regions very near to 
obstacles, where the Reynolds number is based on the body size. However, in predict- 
ing practically the total forces experienced by immersed bodies, we can expect that 
Oseen’s equations are sometimes effective for Reynolds numbers even more than 1,  as 
will be later argued in the case of a circular cylinder. 

Imai (1954) (see also Rosenhead 1963) solved (2.1) and (2.2) with (2.3) to obtain the 
general expression for the complex velocity W = u - iv in the form 

with 
h = u,/2v, 

where r = 1x1, 8 = arg (2) and z = x + i y .  In addition, K,, are the modified Bessel 
functions of the second kind, and f(z) is an arbitrary analytic function of x which ex- 
presses the complex velocity of the potential flow. 

3. Approximate method of solution 
Now, t o  seek a particular solution of Oseen’s equations, we insert into (2.4) 

A - a(0 + i@, 
1 -  

and 

and arrive a t  

and 

As is well known, the so-called Oseenlet is such that it causes a complex velocity 

W 0 -  - a(1) {%(I )  - K(3)} + a(W(K(2) - W,(4)}. (3.6) 

Then, it can be considered that the perturbation velocity We occurs owing to a compo- 
site singularity, a set of an Oseenlet, source or sink, and vortex located a t  the origin of 
the co-ordinate system in an unbounded uniform flow field with the velocity U,. 
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FIGURE 1. Flow past an arbitrary cylindrical body. 27, position of a composite singularity. 

Filon’s formulae (1926) states that the force acting on the Oseenlet immersed in a 
uniform flow U, is given by 

x, + iY, = - 4np{a(l’ + i@}, (3.7) 

where p designates the coefficient of viscosity of the fluid. On the other hand, it is easy 
to show that the singularities other than the Oseenlet, as a whole, experience the force 

x 1+ iy 1 -  - 4np{a(1) + u(3) - i&) - ia(4)}. (3.8) 

From (3.7) and (3.8), we obtain the expressions for the drag D, and lift L, acting on the 
composite singularity located in an oncoming uniform flow U,, namely 

D, = X ,  + X, = - 4 ~ / ~ { 2 d ’ )  + a(’)}, 

L, = Yo + Yl = 4npa(4’. 

(3.9) 

(3.10) 

Fu1 thermore, the outflow Q, from this singularity can be expressed by 

(3.11) 

because there is no outflow from the Oseenlet as is obvious from Filon’s discussion 
(1926). 

Owing to the linearity of Oseen’s equations (2.1) and (2.2), it is possible to take a 

inside the cylindrical body. And, in the present method, we propose a practical and 
comparatively general assumption that the singularities should be placed on the 
contour of a geometry similar to the body boundary with their centroids being coinci- 
dent, as is illustrated in figure 1.  They perturb the uniform flow U, to cause a complex 
velocity in the form 

discrete distribution of composite singularities of number n located a t  z:, z t  , . . . , z, * 

(3.12) 
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where 
(3.13) 

(3.14) 

(3.15), (3.16) 

(3.17) 

On the other hand, in order to satisfy the no-slip boundary condition approxi- 
mately on the body contour, the least squares criterion attempts to minimize a 
parameter I defined by 

I = (j WWds, (3.18) 

where C represents the body contour, and s designates a curvilinear co-ordinate along 
the contour. From this minimization, it follows that 

aI/aa; = 0 j = 1,2 ,  ..., 4n. (3.19) 

C 

Substituting (3.17) and (3.18) into (3.19), we have 

j c ( ~ w l +  ~ ~ ; ) d s  = 0, j = 1,2,  ..., 4n, (3.20) 

which leads to the following matrix form: 

Ga* = b, 
where 

(3.21) 

G 3k . = (j C {9 (&*) 92 (%*) + Y( &*)9( FIi*)}ds, 1 j= 1,2  ,..., 4n, 

k =  1 , 2  ,..., 4n. I 
To obtain the comple; velocity W ,  we have to determine the 4n unknowns a? 

numerically from the system of linear equations (3.21) with the aid of a computer. 
Fortunately, the computation of Gjk  and bj is very easy because of the availability of 
complex-variable arithmetic in a modern computer. 

Moreover, it  is natural that the similarity ratio between the body boundary and the 
singularity-located contour should be determined so as to minimize the integral I .  

Then, referring to (3.9) and (3.10), we can find approximate expressions for the drag 
D and lift L acting on the cylindrical body in question, namely 

(3.22) 

(3.23) 

if the parameter I is small enough to satisfy the no-slip boundary condition approxi- 
mately. 
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Remembering (3.1 l) ,  this assumption of the minimization of I down to a sufficiently 
small value also yields 

(3.24) 

where Q is regarded as a residual of the outflow from the obstacle which may occur in 
such an approximate approach as the present one. Thus, we rewrite (3.22) as 

3n 

j = Z n + l  
D g  47~p a;. 

Hence, the drag and lift coefficients are 

with 
Re = U,E/v, 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

where Re denotes the Reynolds number based on a representative length 1, and P 
depends on the definition of C, and C,. 

Lastly, we shall try to estimate roughly errors occurring in thus computed drag and 
lift coefficients. Considering Filon’s formulae, the error AD in the calculated drag can 
be reasonably supposed as 

IADI = O ( p U i  I*So), (3.29) 
where 

(3.30) 

with So being the perimeter of the obstacle. This is because the residual of the total 
outflow a t  infinity excluding the wake is assumed to be of the order of U, I*So. 
Hence, recalling (3.26), we have 

= 0(2/4SOI*/1). (3.31) 

Similarly, the error in the computed lift coefficient can be estimated as 

IACLl = 0(2PS01*/1). (3.32) 

However, it is considered that the validity of this error estimation should be further 
examined in the future from another point of view. 

4. Numerical discussions 
4.1. Drag acting on a single circular cylinder 

We shall compute the drag experienced by a single circular cylinder of radius a 
immersed in an unbounded uniform flow field. 
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First, with twelve singularities placed on a concentric circle of radius 6 = $a, where 
$ is a similarity ratio, values of I*  are calculated within a range of 0 < q5 < 1, using 
a trapezoidal rule with division number N = 100. The results are plotted in figure 
2 in terms of the Reynolds number Re = 2aU,/v as a parameter. This figure indi- 
cates that the optimum value of $ which minimizes I* ,  is nearly 0.3,  being almost 
independent of Re within the range of 0.01 < Re < 5 .  This is very favourable for the 
present formulation. 

The drag coefficients C, based on 1 = 2a and /3 = 1 in equation (3.26) are computed 
for various Reynolds numbers Re up to 4, with a similarity ratio of 0 .3 .  The results are 
shown in figure 3 ,  compared with the existing expansion formulae and Tritton’s 
experiments (1959). These formulae are expressed as 

- A A A  a -J 
i a x  

I ;.‘ I 1 1 I I . * f = ) * *  
I X f  

877 
(i) C, = - 

ReT,’ 

8n 
(ii) C, = - (1  - T2),  

Re TI 

1 - T2- - Re4 (Tt -4T;“ +&Tl-&$)), 
(iii) C, = - 

Re TI { 32T: 

where 

(4 .3)  

and y = 0.57721 . . . (Euler’s constant). The first one is Lamb’s (191 I ) ,  and the second 
and third itre Tomotika & Aoi’s (1951), which are all based on the homogeneous 

6-2 
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FIGURE 3. Drag coefficients CD for a single circular cylinder, plotted against Reynolds number 
Re. (i) Lamb’s equation (4.1) ; (ii) Tomotika’s equation (4.2) ; (iii) Tomotika’s equation (4.3) ; 
(iv), present results; ---, Kaplun’s equation (4.4) ; - - - - - -, Tritton’s experiment (1959). 

Oseen’s equations. Further, we quote Kaplun’s approximation (1957) in the 
form 

8T 
C - - (1 - 0*87TT2), 

- ReT, (4.4) 

which is plotted in figure 3. It was derived from the famous method of matched 
asymptotic expansions with inner Stokes flow and outer Oseen flow. 

As is obvious from figure 3 or after Van Dyke (1964), Kaplun’s is closest to Tritton’s 
experiments for Re < 1.  And its limited utility is understood to be mainly due to the 
truncation of the series of TI. However, among the others, the present results indi- 
cated by (iv) agree most closely with Tritton’s data for Re < 4. It is especially notice- 
able that there is a comparatively good agreement between them a t  as high a Reynolds 
number as Re = 4 where the flow near to the obstacle actually obeys the full Navier- 
Stokes equations, not Oseen’s equations. In  other words, it can be expected that a 
highly accurate solution for the homogeneous Oseen’s equations is sometimes useful 
even outside the so-called low-Reynolds-number range Re < 1, so long as we concern 
the total force acting on a body. Besides, the solution can be used as the initial 
approximation of a possible iterative procedure for solving the full Navier-Stokes 



Low-Reynolds-number flow past cylindrical bodies 165 

FIGURE 4. Flow past an inclined elliptic cylinder. 0 ,  position of a composite singularity. 

equations. For this reason, some ofthe computations in the present paper cover awide 
Reynolds-number range up to R e  = 5. 

Additionally, from (3.31) with the data illustrated in figure 2, the error in the compu- 
tation of CD can be estimated to be of the order of less than 10-5 over the entire range 
of R e ,  if only Oseen's approximation is assumed. 

4.2. Forces acting o n  an inclined elliptic cylinder 

We now proceed to compute the drag D and lift L experienced by an elliptic cylinder 
of major axis 2a and minor axis 2b, inclined a t  an arbitrary angle a in an oncoming 
uniform flow Urn, as is shown in figure 4. In this case, twelve composite singularities are 
located inside the body the same as before. 

Then, with 1 = 2a and p = 1 in (3.26)-(3.28), we can define 

and 
CD = D/pU& a, CL = L/pU2, a, (4.51, (4.6) 

R e  = 2aUrn/v. (4.7) 

Figures 5 and 6 present variations of I* with the similarity ratio $ = S/a a t  a = 0"; 
the former being for t = 0.1 and the latter for t = 0.5, where t = b /a .  They show charac- 
teristics like those for a circular cylinder illustrated in figure 2, That is, the optimum 
values of 4 are almost independent of the Reynolds number in the range of 

0.01 < R e  < 5, 

and hardly affected by the angle of attack a, though the data are omitted in the present 
paper. Then, we employ 4 = 0.96 for t = 0.1 and q5 = 0.8 for t = 0.5 in numerical 
calculations. Additionally, for the optimum similarity ratios, I* decreases with Re.  
And so, it  can be expected that solutions at  lower Reynolds numbers are more accurate 
than ones at  higher Reynolds numbers. 

Computed drag and lift coefficients are plotted in figures 7 through 10 for thickness 
ratios t = 0.1, 0.5 and 1.0, and R e  = 0.1 and 1.0, compared with Imai's results (1954) 
(see also Rosenhead 1963) found in an approximate analytical method; figures 7 and 8 
being for the drag coefficient C,, and figures 9 and 10 for the lift coefficient CL. It is 
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obvious from these plots that the drag and lift coefficients have maximum values a t  
a = 90" and CL = 45" respectively. And also, the data show that on the whole the 
present results agree fairly with Imai's, especially in the case of Re = 0.1 and t = 0.5. 

Although our algorithm assumes the positions of singularities in the prescribed 
manner, we tried computations with the singularities distributed on the major axis 
of an ellipse. And it was observed that the rearrangement hardly affects the results. 
This will probably not always be the case, but it can be regarded as one of the desirable 
properties of the present technique. 
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FIGURE 7.  Drag coefficients CD for inclined elliptic cylinders at  Re = 0.1, plotted against 
muthal angle a. t ,  thickness ratio b/a;  0, present results; ---, Imai’s results (1954). 
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FIGURE 8. Drag coefficients CD for inclined elliptic cylinders at Re = I ,  plotted against azi- 

muthal angle a. 0, present results; -, Imai’s results (1954). 

Another point worthy of note concerns the fact that, for Re < 1, a certain well-known 
symmetry relationship that applies between the force and velocity in three-dimen- 
sional Stokes flows should also hold approximately in two-dimensional flows. Namely 

N 1, k =  2CL 
(C,, - C,),) sin 201 - (4.8) 
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FIGURE 9. Lift coefficients 0, for inclined elliptic cylinders at  Re = 0.1, plotted against azi- 
muthal angle a. 0, present results; -, Imai’s results (1954). 
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FIGURE 10. Lift coefficients C, for inclined elliptic cylinders at Re = 1 ,  plotted against azi- 
muthal angle a. 0, present results; __ , Imai’s results (1954). 
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where C,, and C,, are the drag coefficients a t  a = 0" and 90" respectively. From Imai 
(1954), we get 

with 

and 

(2T + a2) (2T - a2) k =  
4T(T - I)  - a2((r2 + 2 cos 2a)' 

a = ( l - - t ) / ( l+ t ) ,  

T = ln{8(1+a2)/Re}+#-y. 

(4.9) 

Hence, it is obvious that 
Em k =  1. 

However, both the equation (4.9) and the present results indicate that this limiting 
behaviour can be reached only very close to Re = 0. For example, for Re = 0.1, 
t = 0.1 and a = 45", (4.9) yields 

k = 1.259, 
whereas our method gives 

k = 1.250. 

B + O  

Furthermore, by virtue of (3.31) and (3.32) with figures 5 and 6, it  can be found that 
the data in figures 7 and 9 contain errors of the orders of 0.03 for t = 0- 1,  and 0.01 for 
t = 0.5, and that the data in figures 8 and 10 contain errors of the orders of 0-06 for 
t = 0.1, and 0.02 f o r t  = 0-5. 

Considering both the above-mentioned error estimation and the numerical com- 
parison with Imai's results (1954) which are correct to the order of Re according to his 
discussion, the present results can be recognized to be sufficiently accurate, so long as 
we are concerned with Oseen flows. 

4.3. Forces acting on two circular cylinders 

We consider two circular cylinders Cl and C, o f  the same radius a which are immersed 
in a uniform flow field, as i's shown in figure 11.  Let 2h be the distance between their 
centres, and a be the angle between the x axis and the line passing through these 
centres. Our purpose is to calculate the drag and lift experienced by the cylinder Cl 
with various values of a and h/a. 

In  this case, with composite singularities illustrated in figure 11, we employ a 
criterion integral in the form 

I = f  WWds+$ WWddS. (4.10) 

Then, values of I* are computed for various values o f  a,1 < h/a < 10,O < q5 < 1, and 
0.01 < Re < 5, where Q = &/a and Re = 2aUJv. The results clearly show that the 
optimum value of Q hardly depends on any of these parameters in the specified ranges 
in a similar way as before, though evident data are omitted in the present paper. 

Under various conditions with the optimum value Q = 0.3, we calculated the drag 
and lift coefficients C, and C, based on 1 = 2a andp = 1 in (3.26) and (3.27). Figure 12 
shows computed values of C,/Cg for h/a = 10, a = 0", 90" and 180", and Re ranging 

C1 c8 
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FIGURE 11. Flow past two circular cylinders of the same radius. 0 ,  position of 
a composite singularity. 
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FIUDRE 12. Relative drag coefficients C,/Cz for the circular cylinder C, shown in figure 11 with 
h/a = 10. C:, drag coefficient for a single circular cylinder calculated from (4.3) ; 0, present 
results; - , Fujikawa’s results (1956). 

from 0.01 to 1.0, where C;S denotes the drag coefficient for a single circular cylinder 
given by (4.3). It is observed that on the whole the present results agree well with 
Fujikawa’s (1956), which are correct to the order of Re-’. Additionally, it is noticeable 
that the limiting behaviour clarified by Fujikawa (1956), namely 

(4.11) 

for a finite value of h/a, is not well reached even at  8s small a Reynolds number as 
Re = 0.01. 
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FIGURE 13. Lift coefficients C, for the circular cylinder 0, shown in figure 
-, Fujikawa's results (1956) ; 0, present results; A, Taneda's expel 
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FIGURE 13. Lift coefficients C, for the circular cylinder 0, shown in figure 1 1  with h/a = 
-, Fujikawa's results (1956) ; 0, present results; A, Taneda's experiment (1957). 

1 1  with h/a = 
:iment (1957). 

10. 

This characteristic is quite different from that of a Stokes flow past two spheres, 
because the value of C,/C; for one of them is independent of the body Reynolds 
number as described in the book of Happel & Brenner (1973). Besides, the results 
for a = 0" are significantly higher than those for a = 180°, since the effect of wake of the 
interfering cylinder occurs in the case of a = 180". This also does not occur in a Stokes 
flow past two spheres. 

Figure 13 shows computed values of C, for h/a = 10 with a = 45", 90" and 135') 
compared with Fujikawa's results and Taneda's experimental data (1957) only for 
a = 90". It is noted that the cylinder C, always experiences a repulsive lift except for 
the case of a = 135" at lower Reynolds numbers. And also, there are fairly good 
agreements between the present computations, Fujikawa's theory and Taneda's 
experiments. Moreover, these data show basically different features from those of a 
Stokes flow past two spheres. That is, in the case of a Stokes flow, C, does not depend 
on the body Reynolds number, having the same absolute value for a = 45" and 135", 
and vanishing at  a = go", as is mentioned in the book of Happel & Brenner (1973). 

Furthermore, figures 14 and 15 respectively show variations of C,/C$ and C, with 
the distance ratio h/a in the case of a = go", being compared with Fujikawa's results 
(1956, 1957). According to Fujikawa (1956) 

lim -= C D  1. (4.12) 

However, as is obvious from figure 14, for Re = 0.1 this limiting behaviour is not 
reached in practice even a t  as great a distance ratio as h/a = 15. 

hla-tm c$ 
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FIGURE 14. Relative drag coefficients CD/C; for the circular cylinder C, shown in figure 11, 
plotted against distance ratio h/a with a = 90'. - , present results; - - - - - - , Fujikawa's 
results (1956) with the assumption Ah = O( 1) ; , Fujikawa's results (1957) with the assump- 
t,ion Ah < 1. 
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h la 
FIGURE 15. Lift coefficiente C ,  for the circular cylinder C, shown in figure 11, plotted against 
distance ratio h / a  with a = 90". -- , present results ; - - - - - - , Fujikawa's results (1956) with 
the aasumption Ah = O ( 1 ) ;  ---, Fujikawa's results (1957) with the assumption Ah < 1. 
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FIGURE 16. Flow pattern around two circular cylinders with a = 90" and h/a = 1 at Re = 1 .  
Y, stream function ; hatching indicating the regions where accurate streamlines cannot be 
expected. 

On the other hand, the value of CL in figure 15 shows somewhat complicated varia- 
tions with maxima. And it can be found that generally the present results agree well 
with Fujikawa's (1957) a t  smaller values of h/a,  and with Fujikawa's (1956) a t  larger 
values of h/a, on account of their assumptions Ah = O(1) and Ah < 1 respectively. 
Further, there is a remarkable discrepancy between the present results and Fuji- 
kawa's (1957) near h/a = 1 because of the error term of O(a6/h6) in his expansion 
formula. 

To examine the general flow situations around the cylinders, we calculated the %ow 
patterns for the cases of 01 = 90" and Re = 1 with h/a = 1,  1.3 and 2.1, the last one 
giving nearly amaximum value of C,. The results are plotted in figures 16-18. The 
hatching indicates regions where accurate streamlines cannot be expected in the 
present method. As is observed in figure 16, when the cylinders are in contact, a very 
weak vortex region with vorticity as low as 5 x 10-3U,/a occurs behind the cylinders. 
And it is likely that a smaller vortex region also exists on the upstream side, but our 
method is not accurate enough to identify it. When the cylinders are separated by a 
slight distance of h/a = 1-3, a very low speed flow takes place between them, as is 
illustrated in figure 17. These flow patterns are generally expected ones, though there 
are no data for comparison. 

Additionally, our error estimation with (3.31) and (3.32) indicated that the data in 
figures 12-15 contain errors AC, and ACL of the orders of less than for h/a = 1, 
less than 5 x for h/a = 2, and less than lO-5for h/a = 10. Though a furtherexami- 
nation is needed, the present results for drag and lift coefficients can be understood to be 
sufficiently accurate. 
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FIQURE 17.  
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Flow pattern around two circular cylinders with a = 90' and h/a = 1.3 at Re = 1. 

FIGURE 18. Flow pattern around two circular cylinders with u = 90' and h/a = 2.1 at Re = 1 .  
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FIGURE 19. Flow past an inclined square cylinder. 0 ,  position of a composite singularity. 
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FIGURE 20. Drag coefficients C D  for an inclined square cylinder, plotted against Reynolds 
number Re. -, a = 0'; - - - _ _ -  , a = 45". 

Re 

4.4. Forces acting on an  inclined square cylinder 
We consider a single square cylinder of sides 2a inclined at angle a in a uniform flow 
field as is illustrated in figure 19. Similarly as before, our simulations with sixteen 
composite singularities showed ,that the optimum similarity ratio $ = &/a hardly 
depends on a and Re within a range of 0.01 < Re < 5, where Re = 2aUm/v, though the 
data of them are omitted in the present paper. 

With $ = 0.93, we computed the drag and lift coefficients C, and C, based on 1 = 2a 
and a = 1 in (3.26) and (3.27). Figure 20 shows computed values of C, for a = 0" and 
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FIGURE 21. a for the case 
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FIGURE 22. Variations of lift coefficient C, with azimuthal angle a for the case 
of 8.n inclined square cylinder. 
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FIGURE 23. Lift coefficients C, for a square cylinder inclined a t  a = 22.5", plotted against 
Reynolds number Re. 

45" with the Reynolds number R e  ranging from 0.01 to 4. It is observed that the 
variations of C, for both angles are similar to that of a single circular cylinder as is 
generally expected, and that a slight difference occurs between both cases as the 
Reynolds number R e  increases. 

Figures 21 and 22 illustrate respectively computed values of C, and C, for Re = 0.1, 
0.5 and 1.0, with the angle a ranging from 0" to 90". These data reveal that the values 
of C, are almost independent of a, and those of C, are very small, the sign being 
switched a t  a = 45O, and also extreme values occurring a t  a: = 22.5" and 67.5". 

Furthermore, figure 23 indicates variations of C, a t  a = 22.5" with the Reynolds 
number Re .  Such slight values are not expected to be obtained in the finite difference 
method nor in the finite element method with so small a system of linear equations as 
are involved in the present formulation. Moreover, the data clearly indicate that the 
lift coefficient CL increases with the Reynolds number R e  within the presented range. 

We tried a cornpitation with another mode of singularity distribution, namely 
with singularities which are located diagonally inside the obstacle. And it was found 
that the rearrangement hardly affects the results, like the case of an elliptic cylinder. 

Lastly, our error estimation made it clear that the data in figures 20-23 contain 
errors AC, and AC, of the orders of 0-03, 0-03 and 0.1 for Re = 0.01, 0.1 and 1.0 re- 
spectively. Therefore, the values of C, in figures 20 and 21 are considered compara- 
bively accurate, but those of C, in figures 22 and 23 are less acceptable so long as the 
present error estimation is valid. The errors in these data should be further examined 
from another point of view. 

5. Conclusions 
An approximate numerical method was proposed for solving the two-dimensional 

Oscen's linearized equations for flows past arbitrary cylindrical obstacles. As was 
already mentioned, the approach is based on a discrete singularity formulation with a 
least squares criterion for no-slip boundary condition, which is really an extension of 
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the approximate method for two-dimensional potential flow problems proposed by the 
present authors Kieda & Yano (1978)) and thus it falls within the so-called method of 
weighted residuals. 

The present approach appears to have considerable promise as a technique for 
flow problems in complicated geometries that cannot be solved using classical analyti- 
cal methods, and also it requires a much simpler computation algorithm with a 
relatively smaller system of linear equations than needed in the finite difference 
method, finite element method and continuous singularity method. Especially, our 
approach offers an analytical form of the approximate solution which is easier to 
treat than such one that can be obtained in the continuous singularity technique. 

It is also noticeable that, in all cases of the present simulations, the optimum simi- 
larity ratio q5 which specifies the most suitable positions of singularities hardly depends 
on the Reynolds number and the angular position of the body in question. This is very 
favourable for the present formulation. 

Moreover, the rough error estimation for computed drag knd lift coefficients pro- 
posed in this paper should be further examined for its validity from another point of 
view. Particularly in the case of an inclined square cylinder, a more critical error 
estimation is required for the computed lift coefficients. 

Lastly, it should be added that all computations were performed on a FACOM 
M-190 computer in double precision (64 bits per floating point word). 
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